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Abstract

Purpose This study proposes a generalization of markerless patient registration in image-guided neurosurgery based on
depth information. The work builds on previous research to evaluate the performance of a range of commercial depth cameras
and two different registration algorithms in this context.

Methods A multimodal experimental setup was used, testing five depth cameras in seven configurations. Fiducial registration
error (FRE) and target registration error (TRE) metrics were calculated using iterative closest point (ICP) and deep global
registration (DGR) algorithms. A phantom head model was used to simulate clinical conditions, with cameras positioned to
capture the face and craniotomy regions.

Results The best-performing cameras, such as the D405 and Zed-M+, achieved TRE values as low as 2.36 &+ 0.46 mm
and 2.49 + 0.35 mm, respectively, compared to manual registration that obtains a 1.37 mm error. Cameras equipped with
texture projectors or enhanced depth refinement demonstrated improved performance. The proposed methodology effectively
characterized the suitability of the camera for the registration tasks.

Conclusion This study validates an adaptable and reproducible framework to evaluate depth cameras in neurosurgical scenar-
ios, highlighting D405 and Zed-M + as reliable options. Future work will focus on improving depth quality through hardware
and algorithmic improvements. The experimental data and the accompanying code were made publicly available to ensure
reproducibility.

Keywords Depth sensors - Image registration - MRI - Computer-assisted intervention

Introduction edge, leading to the research of automated solutions [4, 10,

23]. Another issue is the lack of an in situ response, as

Magnetic resonance imaging (MRI) is widely used in image-
guided neurosurgery (IGN) due to its high spatial resolution,
non-invasive nature, and ability to provide a good contrast
response with soft tissue contrast [2, 12, 22, 37]. Although
helpful as it is, this MRI has some limitations that have led
to an increasing push to combine this technology with other
medical techniques to enhance its usability. One such limita-
tion is the location of the disease, which is a time-consuming
task often performed manually that requires expert knowl-
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MRI is usually performed preoperatively and does not pro-
vide dynamic guidance during the procedure. This can be
addressed by the generation of a multimodal system with
preoperative MRI and other intraoperative image solutions
[3,8,17].

Many dynamic imaging solutions are used to integrate
preoperative and intraoperative images. These include com-
puted tomography (CT) [17], positron emission tomography
(PET) [41], ultrasound (US) [27], and hyperspectral imag-
ing (HSI) [31, 38]. In all cases, the challenge facing these
systems is the registration of preoperative MRI with intraop-
erative images obtained during surgery. This process is not
straightforward and often relies on semiautomatic methods
that depend on manually selecting the corresponding points
on both the MRI and the intraoperative image. However, this
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manual selection is prone to variability between operators
and is very time-consuming [5].

This work is based on a previous work, HyperMRI [45], in
which a novel multimodal augmented reality (AR) method-
ology was proposed for the registration of MRI and HSI. The
methodology employs an Azure Kinect DK RGBD camera
and an Optitrack tracking system to dynamically combine the
information provided by preoperative MRI and the classifi-
cation map generated from a HS camera in a fully automatic
way. In this process, registration between the preoperative
and intraoperative environments is carried out by aligning
the preoperative 3D volume with the patient’s face during
surgery. This step is crucial to the methodology, as the qual-
ity of subsequent registration is heavily dependent on both
the quality of the captured 3D face and the algorithm used to
align it with the preoperative volume.

Building on this approach, the present work aims to gener-
alize the methodology to any depth camera by changing the
camera-tracking calibration, allowing to register and track
any RGBD camera (the previous method was restricted to IR-
based cameras). Using the novel methodology, we compared
five different RGBD cameras with various depth acquisition
technologies and two distinct algorithms for the registration
process. The goal is to evaluate how the performance of each
camera impacts the quality of the registration and to evaluate
the effectiveness of each algorithm in aligning the intraoper-
ative data with the preoperative 3D volume. By conducting
this comparison, we identify the most suitable combination
of camera and algorithm to improve the accuracy and perfor-
mance of the registration in an image-guided neurosurgical
context.

The findings indicate that using this methodology, two
camera-algorithm pairs stand out from the others, achieving
a target position error (TRE) of 2.36 mm for the Intel D405
camera and 2.49 mm for the Zed-M+, respectively. These
values significantly improve upon the approximately 4 mm
error reported in previous work with the Microsoft Kinect
Azure camera. Furthermore, the results achieved are com-
parable to the manual registration method, which yielded an
error of 1.37 mm, highlighting the effectiveness of the auto-
matic method.

Related works

The main problem with image registration in the medical field
is the lack of precise registration. Dynamic AR multimodal
systems generally manage this by employing depth sensors
and real-time tracking devices.

An important trend in multimodal AR systems involves
head-mounted displays (HMDs) with depth cameras, such
as HoloLens 2. Equipped with a ToF sensor and IR cameras,
the HoloLens 2 enables tracking through reflective markers
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without the need of an external tracking system. Several stud-
ies [16, 25, 32] have successfully used HoloLens 2 in various
medical settings, reporting millimeter-level accuracy. Alter-
natively, some researchers use standalone commercial depth
cameras [18] (Intel RealSense D415 [19]), [28] (Zed mini
[42]), [47] (Intel D415), [24] (stereo HikVision MV-CA023-
10GM) along with a tracking system to achieve an AR system
with a similar accuracy. In these works, the AR system is
employed to assist spine surgeries, iliac crest transplant, or
oral and maxillofacial surgeries, enhancing surgeons’ effi-
cacy and precision.

AR systems have also been employed in neurosurgery, aid-
ing in preoperative planning, intraoperative navigation, and
enhancing surgical precision. One example is [13], where the
authors utilize an AR system to enhance navigation through
the brain’s internal structures (including tumor), which were
previously segmented from a preoperative MRI. Similarly,
in [29], the authors developed an augmented reality (AR)
system that integrates preoperative CT scans with real-time
RGB visualization, using fiducial markers and deep learn-
ing for accurate registration. With this system, they aim to
enhance surgical navigation by leveraging preoperative data
for improved precision and guidance.

All these studies share a common approach; they register
patient’s volume information acquired preoperatively with a
real-time depth camera. This process heavily relies on the
depth information provided by the depth cameras and the
registration algorithm, as shown in works such as [6], for
depth cameras, and [9] for registration algorithms. Extend-
ing this approach, our work compares several commercial
depth cameras and registration algorithms in the context of
surgical applications to assess their performance in multi-
modal augmented reality systems for surgeries.

Materials and methods

This study focuses on comparing five commercially available
depth cameras under controlled conditions, assessing their
performance in aligning point-cloud data to preoperative syn-
thetic MRI volumes. In addition, a neural network-based
approach was employed and evaluated along with the widely
used iterative closest point (ICP) algorithm to determine
the optimal registration strategy. The following subsections
detail the equipment, experimental setup, algorithms, and
evaluation metrics used in this study.

Experimental setup

The five depth cameras used in this study are: (i) Intel
RealSense D405 [21], (ii) Intel RealSense D435f [20], (iii)
ZED-M by StereoLabs [42], (iv) OAK-D Short Range by
Luxonis [30], and (v) MotionCam-3D S by Photoneo [36],
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Calibration tool
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Intel D405

Fig.1 Experimental setup. Materials used in the experiments: cameras (bottom) with their respective tracking objects attached, the calibration tool
(checkerboard and tracking markers, upper left), and the phantom head and brain (upper right)

as illustrated in Figure 1. These cameras are a representative
sample of commercial options that are widely accessible,
with their main features summarized in Table 1.

Three different depth-camera technologies were employed
to identify the most suitable option for this use case. The
experimental setup includes cameras with short- (D405, Oak-
D and Photoneo-S) and long-range (Zed-M, and D435f)
depth capabilities. These cameras feature varying resolu-
tions, including 720p HD for Intel cameras, Full HD for
Zed-M, and specific resolutions of 1280x 800 and 1120x 800
for Oak-D and Photoneo-S, respectively. In addition, pro-
jectors were used to enhance depth measurements in two
different configurations. The D435f camera features an
infrared projector with a fixed semi-random dot texture, while
the Photoneo-S camera uses an infrared projector that func-
tions as both a time-of-flight camera and a structured light
system for depth sensing. Furthermore, depth refinement is
used in the Zed-M camera, which utilizes a neural network
to improve accuracy and smooth depth data.

The purpose of the experiments is to evaluate the effec-
tiveness of each camera in the generalized methodology
proposed in this work. For additional options, such as the
dot projector in the D435f camera and the neural network
refinement in the Zed-M camera, the cameras will be tested
in both configurations, using the enhancements and without

them, to assess their impact on depth measurement perfor-
mance.

The experimental setup was designed to evaluate the per-
formance of the selected depth cameras under controlled
conditions, specifically for the task of registering a patient’s
MRI with real-time data in the operating room. To simulate
this scenario, in addition to the depth cameras, a commercial
tracking system was used to locate the cameras in the 3D
space. The tracking system consisted of four Optitrack Flex
3 cameras [35], coupled with Motive software, which was
responsible for retrieving the positions of rigid bodies within
the setup.

To simulate the conditions of MRI registration, a man-
nequin head phantom was used. Rather than recreating a
complete patient head, an expanded polystyrene (EPS) head
served as the base, ensuring realistic facial features such as
a bigonial width of 118 mm, an alar base of 35 mm, and a
nose length of 50 mm, among others [15]. A brain segment,
3D-printed from areal MRI scan, was integrated into the EPS
head, as shown in Figure 1. This allowed a visual assessment
of the alignment between the brain MRI and the head seg-
ment. The point-cloud data were acquired using an EinScan
Pro 2X 3D scanner (Shining 3D) [40] and processed with
3D-Slicer software [1] to generate synthetic MRI slices. The
head surface was converted into volumetric data in 3D-Slicer
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Table 1 Cameras specifications

Camera Depth resolution Depth technology Depth range
D405 1280 x 720 IR stereoscopic 0.07-0.5m
D435f 1280 x 720 IR stereoscopic + projector 0.3-3m
Zed-M 1920 x 1080 RGB stereoscopic + NN 0.1-9m
Oak-D 1280 x 800 RGB stereoscopic 03-1m
Photoneo-S 1120 x 800 Parallel structured light 0.33-0.55m

by adjusting the scan spacing to match real-world MRI, as
resolution variations can impact registration accuracy met-
rics.

Using the phantom head and the tracking system, the same
conditions are ensured for the five cameras. The registration
procedure used in this study follows the approach defined in
the HyperMRI work [45]. Specifically, the information used
for patient registration includes the face, which is extracted
from an RGB image and reprojected onto the depth camera.
The point cloud of the patient’s face is then captured by the
depth camera and aligned with the corresponding point cloud
derived from the synthetic MRI data (in this work, the phan-
tom head). For this alignment, a neural network designed for
point-cloud registration, known as deep global registration
(DGR) [11], is used in conjunction with the traditional iter-
ative closest point (ICP) algorithm [26], to test registration
performance.

Dataset acquisition

To ensure a fair comparison between the cameras, a dataset
was acquired using a methodology developed in this work
and made publicly available as open-source! as well as the
code needed to capture, calibrate and register the infor-
mation”. The following steps were performed for each
camera: (a) characterization of intrinsic parameters, (b) co-
registration within the tracking system, (c) registration and
testing captures, as depicted in Figure 2. These stages are
explained in more detail in the following subsections.

Intrinsic camera calibration

The intrinsic calibration is performed using the DLR CalLab
framework (German Aerospace Center) [43]. This calibra-
tion includes the projection matrix (K matrix) and distortion
parameters for the main RGB camera used in the system,
which needs to be aligned to the depth information. Depend-
ing on the camera, the RGBD image is generated in a different
position: the left camera (Zed-M, Oak-D), the virtual posi-

! Public available in
14627320

2 https://gitlab.citsem.upm.es/public-projects/immersive-imaging/
benchmarking-commercial-depth-sensors.git

Zenodo:  https://doi.org/10.5281/zenodo.
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tion of the center camera (D405), or the real RGB camera
(D435f, Photoneo-S).

The calibration process is performed by extracting eight
captures from a Radon checkerboard [34] in different posi-
tions, as shown in Figure 2a. Four of the positions correspond
to the checkerboard tilted at four different orientations, while
the remaining four captures to the same orientations but with
the checkerboard placed at a different depth plane. These
depth planes are determined based on each camera’s field of
view and resolution, ensuring a consistent approach across
all devices by covering at least one edge of the sensor in each
capture to achieve a robust characterization of the radial dis-
tortion parameters.

Co-registration within the tracking system

To perform co-registration within the tracking system, each
camera was mounted with a specifically designed track-
ing object to ensure precise localization. Initially, reflective
markers were attached directly to the camera bodies. How-
ever, due to the camera’s limited surface area, this approach
resulted in insufficient marker dispersion, making it diffi-
cult to accurately determine the cameras’ rotation within the
Optitrack system. To address this issue, the tracking objects
were redesigned to provide better marker distribution and
to enable precise tracking of both the camera location and
orientation, as illustrated in Figure 1.

Once the cameras could be reliably tracked by Opti-
track, their captured images needed to be co-registered to
the Optitrack coordinate system, specifically aligning the
optical center of each camera to its corresponding tracking
object (transformation E in Figure 3a). The co-registration
approach, originally presented in [45], was designed for IR-
based depth cameras, such as the Microsoft Kinect Azure
[33]. Unlike the original method, which relied on a cal-
ibration tool with three reflective markers, this procedure
has been adapted to work with any type of camera within
the tracking area. This adaptation enables the integration of
various imaging technologies, including hyperspectral cam-
eras, thermal cameras, or any camera with clinical relevance.
Indeed, camera resolution and checkerboard size factors will
influence the precision.
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(a) Intrinsic calibration

Fig. 2 Dataset acquisition methodology. For each camera, the same
procedure was followed: (a) calibration of intrinsic parameters using
a checkerboard at two depth planes, (b) establishing the relationship
between the camera’s optical center and the tracking system’s coordi-

(b) Tracking co-registration

g

(c) Registration experiment

nates with the calibration proposed, and (c) positioning the camera in
two zones around the patient phantom-one for capturing the face and
the other for focusing on the exposed brain region. This process was
repeated 10 times to evaluate camera accuracy

(a) Calibration procedure

Fig. 3 Co-registration of cameras within the tracking system. (a)
Schematic representation of the calibration procedure for each cam-
era and the transformation details. (b) Real-world capture of the D405

(c) Post-calibration detail

camera in the augmented reality interface developed for the calibration
procedure. (c) Calibration result showing perfect alignment between
the virtual and physical checkerboard

@ Springer
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The calibration process involves capturing multiple
images of a checkerboard while simultaneously retrieving
the tracking positions of both the camera and the checker-
board. To ensure that the checkerboard can be tracked like
the cameras, reflective markers are attached to it at varying
heights for better tracking performance. Using the positions
provided by the tracking system of the two rigid bodies (cam-
era and checkboard), a relative transformation between them
is calculated (transformation M in Figure 3a). The relative
position of the optical center and the checkerboard is esti-
mated using Zhang’s calibration method [7], implemented
in OpenCV (transformation V in Figure 3a). Combining this
information, the relative transformation between the rigid
body of the camera and its optical center (E) and between
the checkerboard’s origin and its rigid body (G) can be cal-
culated through an optimization procedure, as described in
[14].

Both transformations, E and G, must be estimated simulta-
neously. The relationship between the variables is expressed
in Equation 1. To achieve this, an optimization procedure
is conducted in which the standard deviation of the checker-
board points is minimized by transforming them according to
the equation. Optimization is performed using the L-BFGS-
B method of the Scipy library [39].

G=WM- E-v)! (1)

The calibration procedure is interactive, facilitated by an
AR interface developed in Python using VTK [46]. This inter-
face allows the optimization procedure to be relaunched and
updated in real-time for each new capture. This interactive
approach not only calibrates the cameras but also enables
the immediate evaluation of calibration quality. By visually
inspecting the overlap between the actual checkerboard and
the virtual checkerboard, positioned according to the trans-
formations, users can assess the precision of the calibration
in situ, as depicted in Figure 3b and Figure 3c.

Register experiment

To evaluate the performance of the cameras, the experimen-
tal procedure involved placing them in two distinct locations
relative to the patient phantom. These positions were used to
compute the registration metrics for camera comparison, sim-
ulating realistic conditions in an operating theater. This setup
reflects the clinical scenario where patient registration must
be completed before craniotomy, after which the patient’s
face is covered, necessitating camera relocation to visualize
the surface of the brain, while maintaining an approximate
distance of 40 cm to avoid the sterile surgical area. The parts
of the phantom head used to extract each metric are detailed
in Figure 4.

@ Springer

In the first position, called the registration position, five
captures were taken at each of ten different locations to reg-
ister the patient and calculate the fiducial registration error
(FRE). In the second position, referred to as the testing posi-
tion, the same procedure and number of images have been
followed to compute the target registration error (TRE) as
shown in Figure 4a. This dual-position approach ensures a
complete characterization of each camera.

The configuration of the registration algorithms used in
this experiment is as follows: ICP is based on the Open3D
implementation of point-to-point ICP, incorporating global
registration with RANSAC for robust alignment. DGR was
utilized with the pre-trained weights, with the voxel size
adjusted from the original 5 cm to 5 mm to better suit the
specific requirements of this use case.

For the FRE calculation, only the patient’s face was used,
as this constitutes the information used by the registration
algorithms to compute the transformation, following the pro-
cedure described in [45]. For the TRE calculation, distinct
points that were not involved in the registration process were
used. Specifically, a YOLOv11 network [44] was fine-tuned
to automatically detect the craniotomy site of the patient (blue
in Figure 4b), allowing the TRE metric to be calculated exclu-
sively within the region of interest. This approach minimizes
the influence of extraneous elements, such as background
information, and ensures that the evaluation focuses solely on
the relevant anatomical area. The bounding boxes generated
by YOLOv11 were manually reviewed to confirm accurate
detection of the ROI and to maintain a fair comparison across
different cameras by ensuring a consistent margin around the
region of interest.

To establish a baseline comparison, a manual registration
of the phantom patient was performed by an experienced user
and a non-trained user. This baseline serves as a reference
for evaluating the performance of the automated registra-
tion methods and the accuracy achieved by each camera.
Manual registration was performed using a fiducial marker
approach, with markers specifically designed to ensure pre-
cise placement of the probe during the registration process.
This setup represents an ideal scenario where the user has
sufficient experience to perform an accurate registration.
In real-world scenarios, landmarks are sometimes manually
selected, which can introduce greater human bias. The pro-
cess utilized the Micron Series Digitizing Probe (Optitrack)
and an interactive interface developed in Python using VTK
to compute the landmark transformations necessary for reg-
istration.

For this manual registration, the phantom head was
equipped with eight rigidly attached fiducial markers, which
were also manually identified in the MR slices using the
3D-Slicer software [1]. Half of these markers were used for
registration (FRE), while the remaining markers were used
for evaluation (TRE). This dual approach ensures a robust
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(a) Schema of register experiments

Fig. 4 Registration experiment. (a) Schematic representation of the
registration experiment conducted with each camera, illustrating the
information utilized to compute each metric (lighter-colored cameras
represent the various positions). (b) Example of registration results

comparison of manual and automated registration methods
across different cameras.

Experimental results

This section presents and discusses the results obtained using
the proposed methodology for the five commercial depth
cameras listed in Table 1.

Calibration

The results of the calibration process for each camera are
included in Table 2. These results comprise both the intrinsic
camera calibration and the co-registration with the external
tracking system.

The intrinsic camera calibration error represents the pro-
jection error for each camera in pixels, calculated using the
intrinsic matrix and the calibration captures. The results pre-
sented below are the direct output of the calibration software.
As can be observed, the error for every camera is sub-pixel,
achieving the best results for the Intel D405 and Photoneo-S.

In contrast, the co-registration error is calculated by pro-
jecting the points of the virtual checkerboard onto the image
captured by the RGB camera (which is already aligned
with the depth camera), using the transformation detailed
in Section 3.2.2. This error represents the average Euclidean
distance between the projected points in 2D and the corre-
sponding captured points. Notably, the co-registration error is
consistently sub-pixel. Furthermore, the number of captures

Evaluation !
positions

B et :

(b) FRE example

using the D405 camera at the registration position, showing the overlap
between the camera point cloud (orange) and the MR-derived facial
surface (blue)

varies as the process can be stopped once the error reaches an
acceptably low level, below a quarter of a pixel considered a
reliable stopping criterion.

Registration

The comparison of cameras for the registration task, as
described in Section 3.2.3, involved two experiments: one
evaluating the performance at the registration position (mea-
suring FRE) and another at independent points (quantifying
TRE). Five cameras in seven configurations were analyzed
using two registration algorithms, ICP and DGR. Also,
manual register based on landmarks has been realized by
the author and a non-expertized user, utilizing predefined
reference points to ensure high registration quality and char-
acterize the minimum achievable error with this approach.
Under standard conditions, these points are not clearly
defined, which can lead to higher errors due to human bias.
The results are summarized in Table 3.

For each camera, a transformation was computed at 10
distinct positions within the registration setup, maintaining
a mean depth range of 44.22 4 11.22 cm across all cameras
and positions. At each position, five captures were collected
and a mean transformation was derived to map the patient’s
MR data to the tracking system’s coordinate frame. To evalu-
ate the TRE, additional captures were taken at 10 evaluation
positions, with five captures per position, maintaining a mean
depth range of 45.38 £ 14.94 cm across all cameras and posi-
tions. These evaluation positions focused exclusively on the
brain region of interest, specifically the craniotomy site, by
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Table2 Results of the
calibration of each camera. It

Camera intrinsics

Co-registration

includes the intrinsic camera Proj. Error (px) Captures Proj. Error (px) Captures Resolution
projection and the
co-registration error from the D405 0.38 8 0.21 £0.10 15 1280 x 720
camera to the tracking system D435f 0.67 8 0.16 = 0.08 15 1280 x 720
Zed-M 0.57 8 0.21 £0.09 15 1920 x 1080
Oak-D 0.68 8 0.10 £ 0.02 9 1280 x 800
Photoneo-S 0.30 8 0.08 + 0.04 13 1120 x 800
Table 3 Registration error in
RMSE [mm)] for each camera FRE TRE
with different registration ICP DGR ICP DGR
algorithms and manual register
from different operators. D405 1.60 £ 0.78 1.52 £ 045 2.36 £ 0.46 3.17 £0.29
Captures with less than 95% D435f 1.63 £0.76 1.52 £ 041 3.83 £0.69 3.97 £0.48
overl.'?lp were excluded due to D435f w/o proy. Overlay < 95% Overlay < 95% - -
unreliable results
Zed-M 3.24 +0.30 3.14 £ 0.20 Overlay < 95% Overlay < 95%
Zed-M + 247 £0.61 2.07 £0.21 2.49 £0.35 3.26 £0.23
Oak-D Overlay < 95% Overlay < 95% - -
Photoneo-S 1.30 £ 0.95 1.65 £ 1.00 2.99 £ 1.50 3.15 £ 0.58
Author User Author User
Manual register 0.48 +£0.07 0.68 £ 0.14 1.28 £0.26 1.41 £ 0.57
Overall 0.64 +£0.22 1.37 £0.22

cropping the point clouds using the bounding box of the brain
region.

The point clouds from the cameras were compared with
the registered MR data, and the FRE and TRE metrics were
computed using the Open3D library. Initially, an overlap
analysis was performed between the point clouds, with only
overlapping points considered for the distance calculation.
Registrations with less than 95% overlap were excluded as
they yielded unreliable results, classifying them as failed reg-
istrations.

The results indicate a notable variability in camera per-
formance. Photoneo-S achieved the lowest FRE with ICP
(1.30 £ 0.95 mm), followed closely by D405 (1.60 £ 0.78
mm) and D435f (1.63 £+ 0.76 mm). Zed-M + also showed
strong performance, particularly when using DGR (2.07
4+ 0.21 mm). In contrast, cameras such as the Oak-D and
D435f without projector failed to meet the minimum over-
lap requirement, highlighting limitations in their ability to
reliably align patient data.

For TRE, the D405 demonstrated consistent performance
in both algorithms, with values of 2.36 & 0.46 mm (ICP) and
3.17 £ 0.29 mm (DGR). Similarly, the Photoneo-S achieved
2.99 4+ 1.50 mm (ICP) and 3.15 £ 0.58 mm (DGR). Both
cameras provided high-quality results in an automatic way,
with deviations of around 1 mm compared to manual reg-
istration. Although some configurations, such as Zed-M+,
showed slightly higher TRE values, DGR generally exhibited
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greater variability than ICP, potentially indicating differences
in the robustness of the algorithms.

These findings emphasize the importance of selecting
appropriate camera configurations and algorithms for precise
intraoperative registration. Photoneo-S and D405 emerged
as the most reliable options, consistently achieving high
accuracy across both FRE and TRE. Moreover, the results
highlight the significant impact of depth quality enhance-
ments on registration performance when cameras are com-
plemented with a texture projector and/or a refinement neural
network. For example, the D435f without the projector failed
to achieve sufficient overlap to accurately register the patient.
However, when the projector was enabled, the camera’s
performance improved substantially, yielding results com-
parable to other high-performing cameras.

This underscores the critical role of supplementary fea-
tures, such as projectors and post-processing techniques, in
enhancing depth data quality. However, the inability of cer-
tain cameras to meet the overlap threshold illustrates the need
for thorough validation of camera configurations in specific
clinical setups to ensure robust and reliable registration per-
formance.



International Journal of Computer Assisted Radiology and Surgery (2025) 20:1759-1769 1767

Conclusion and future work

This study presents a comprehensive evaluation of a signifi-
cant range of commercial depth cameras for the registration
task, showcasing significant contributions to the field. First,
the methodology was generalized to support a variety of
depth cameras beyond the Microsoft Kinect used in Hyper-
MRI [45], enabling broader applicability. A dataset capturing
all experimental data was made publicly available, along
with the accompanying codebase, ensuring reproducibility
and further research. Key innovations include an interactive
augmented reality interface for camera calibration and a land-
mark registration interface.

The results highlight a significant improvement in TRE
compared to HyperMRI, where a TRE of approximately 4
mm was achieved. In this study, the best-performing cam-
eras, the D405 and Zed-M+, achieved a TRE as low as 2.36
and 2.49 mm, respectively, demonstrating their reliability for
registration tasks when compared to the manual registration
method (with predefined reference points), which yielded a
1.37 mm error. Furthermore, this paper validates the proposed
methodology as an effective framework for characterizing
depth cameras in clinical registration scenarios.

The compact size and affordability of these cameras make
them practical for integration into real operating rooms with
minimal disruption to surgical procedures. Implementing this
type of automated registration could significantly reduce
registration time compared to manual methods, which are
highly dependent on the expertise of the clinician. Although
the achieved registration accuracy closely matches that of
an ideal manual scenario using predefined reference points,
real-world conditions introduce human bias and variable con-
straints, potentially increasing error. This underscores the
value of automatic registration methods in improving con-
sistency and reliability in clinical settings.

Future work will focus on several directions to enhance
the findings of this study. Adding a texture projector or
depth refinement to the best-performing cameras, such as the
Zed-M+ and D405, could improve depth quality and regis-
tration accuracy, while also exploring different depth ranges
to assess their impact on performance. Further improvements
in the tracking system could help reduce TRE, enabling even
greater precision in clinical applications. Additionally, fine-
tuning the DGR network with point clouds specific to this use
case, rather than generic room-based datasets, could enhance
its performance and robustness in similar medical scenarios.
To further validate this methodology, future studies will aim
to test it on real patients.
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